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Abstract Isolated neutral gold clusters with 2–20 atoms

are studied theoretically using a parametrized density-

functional tight-binding method combined with genetic

algorithms. The structural and energetic properties are

analyzed by studying the total energy per atom, the relative

stability, the overall shape, and through a common-neigh-

bor analysis. In addition, the temperature dependence of

the vibrational heat capacities of the optimized gold clus-

ters has been studied for the first time. We find the vibra-

tional heat capacity of the clusters to be strongly size

dependent at low temperature. For instance, the cluster

with 6 atoms has a high vibrational heat capacity at low

temperature, a finding rationalized in terms of structure.

Keywords Gold clusters � Structural properties �
Vibrational heat capacity

1 Introduction

From a theoretical point of view, one of the largest chal-

lenges in the study of metal clusters is related to the deter-

mination of their ground-state structures. In experimental

studies, the clusters are rarely isolated, nor in a gas phase or

in a rare-gas matrix, but they interact with a medium like a

solvent or a supporting surface. Moreover, they may possess

surfactants and, in many cases, their precise size is only

approximately known. On the other hand, theoretical studies

most often deal with isolated well-defined cluster sizes and

consider naked clusters without ligands.

Without any further information, identification of the

ground-state structure of an N atomic cluster requires a

search in a 3N - 6 dimensional structure space. This com-

putationally very demanding step limits theoretical studies to

small clusters.

To overcome the high computational demand, theoreti-

cal studies of cluster properties have to incorporate one or

more approximations: (1) selected sizes and/or structures

of the clusters are studied, (2) empirical potentials that

depend only on the interatomic distances are employed,

whereby electronic degrees of freedom are neglected, and/

or (3) parametrized methods that include electronic degrees

of freedom are used. In addition to the use of approximate

methods for the determination of the total energy for a

given structure, various approaches for the determination

of the structure of the global total-energy minimum have

been used. These include Simulated Annealing, Basin–

Hopping and Genetic Algorithms [1–9].

Gold clusters constitute a special case and have attracted

much attention during the past 30 years. However, it has

turned out to be particularly difficult to determine the

properties of gold clusters, partly because the calculated

structures very sensitively depend on the applied methods
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[10]. This is to a much lesser extent the case for most other

elemental clusters.

Interesting results are obtained by studying the clusters’

thermodynamic properties experimentally or theoretically.

The melting temperatures of small clusters [11–13] (i.e.,

temperatures at which the heat capacity as a function of

temperature has a maximum) as well as other low-tem-

perature properties can provide useful information.

In this contribution, we shall present results of a theoretical

study of the properties of gold clusters. We have used an

approximate density-functional methods for the description of

the interatomic interactions together with genetic algorithms

for the determination of the structure of the global total-energy

minimum. Due to the approximations inherent to the applied

density-functional method, our results for specific systems may

suffer from minor inaccuracies. We stress, however, that our

goal is to identify general trends in the size development of the

properties of the gold clusters and not in obtaining very accu-

rate results for selected sizes and/or structures. Those could be

obtained with the use of more accurate theoretical approaches

that, on the other hand, for computational reasons would not

permit a more general study like the one presented here.

In the present work, we shall at first (Sect. 3.1) review

our earlier results on the structural and energetic properties

of gold clusters [14]. As an extension of that work, we shall

subsequently (Sect. 3.2) present new results devoted to the

vibrational contributions to the thermodynamic low-tem-

perature properties of the clusters. The purpose of the last

part is to explore which kind of information can be

obtained by studying the heat capacities of the clusters and,

in particular, to see whether the heat capacities can be

correlated to structural and/or energetic properties of the

clusters. We shall, thereby, use the simplest possible

approach for studying the heat capacities, i.e., a harmonic

approximation for the structures at T = 0 and, in addition,

also consider temperatures well above those for which

anharmonic effects or melting are important. Moreover, we

shall not take into account the possibility that there may be

more energetically low-lying isomers that all may con-

tribute to the properties of the system for T = 0, but only

consider the single structure of the lowest total energy.

However, for the purpose of identifying correlations

between heat capacities on the one side and structural and

stability properties on the other side, our approach should

be justified. Finally, due to the surprising structural prop-

erties of gold clusters, these provide an excellent play-

ground for such studies.

2 Computational method

We have used a parametrized density-functional tight-

binding (DFTB) method [15] in combination with genetic

algorithms to study neutral gold clusters with sizes ranging

from 2 to 20 atoms. The DFTB method is used for calcu-

lating the total energy of a given structure and for relaxing

this structure to its nearest local total-energy-minimum

structure. The genetic algorithms are employed for finding

the global total-energy-minimum structures. The DFTB

method provides some information about the clusters’

electronic properties.

The DFTB method is based on the density-functional

theory of Hohenberg and Kohn [16] in the formulation of

Kohn and Sham [17]. The total energy of the compound of

interest relative to that of the isolated atoms is then written

as a difference in the orbital energies of the compound,

f�ig; minus those of the isolated atoms, augmented by pair

potentials,

E ¼
X

i

�i �
X

m

X

i

�im þ
X

m1;m2

Um1m2
ðjRm1

� Rm2
jÞ: ð1Þ

Here, �i is the energy of the ith orbital of the compound,

whereas �im is the energy of the ith orbital of the mth

isolated atom.

In order to calculate the orbital energies, the Kohn–

Sham orbitals Wi of the system of interest are expanded in

terms of atom-centered localized basis functions, {/jm},

WiðrÞ ¼
X

jm

cijm/jmðr� RmÞ; ð2Þ

where /jm is the jth basis function centered at atom m,

placed at point Rm.

The Kohn–Sham single-particle operator is written as

ĥ ¼ t̂ þ VeffðrÞ; ð3Þ

where t̂ denotes the kinetic-energy operator and Veff (r)

denotes the effective Kohn–Sham potential. The latter is

approximated as a simple superposition of the potentials of

the neutral atoms

VeffðrÞ ¼
X

m

V0
mðjr� RmjÞ: ð4Þ

We assume that h/j1m1
jV0

mj/j2m2
i vanishes unless at least

one of the two basis functions is centered at Rm. Thereby,

all relevant information for the secular equation can be

extracted from accurate density-functional calculations on

the two-atomic molecules.

After having determined all quantities for the first two

terms in Eq. 1, the short-ranged pair potentials Um1m2
as

functions of interatomic distance are determined by

requiring that the total energy of two-atomic systems (in

our case, of Au2) as a function of interatomic distance,

which is determined through accurate density-functional

calculations, is accurately reproduced.

Finally, in the present study, we use the same parameter

values as in our earlier study on AuN clusters [14]. This
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means that only the 5d and 6s electrons of the isolated Au

atom are explicitly included in the calculations, whereas

the rest is treated within a frozen-core approximation. For

the AuN clusters with even N, we considered only singlet

states and for odd N only doublet states. Spin-orbit cou-

plings are not directly included in the calculations,

although their effects are partly included indirectly through

the short-ranged pair potentials.

For the gold structure optimizations, we have used a

genetic algorithm which we developed in earlier studies on

HAlO clusters [18]. Genetic algorithms are based on the

principles of natural evolution and are, therefore, also

called evolutionary algorithms [19]. They have been found

to provide an efficient tool for global geometry

optimizations.

Our version of the genetic algorithms functions as fol-

lows. Suppose that we have optimized the structure of the

cluster with N atoms. From this structure, we construct a

set of initial structures (i.e., the first generation) consisting

of M independent clusters for the (N ? 1)-atom system by

randomly adding one Au atom and letting these structures

relax to their nearest total-energy minima. Subsequently, M

new (N ? 1)-atomic clusters (i.e., the next generation) are

constructed by cutting each of the original ones randomly

into two parts that are interchanged (under the constraint

that no atom should be too close to any other atom or too

far away from all the other ones) and, subsequently,

relaxing the resulting structures to their nearest total-

energy minima. Out of the total set of 2M structures, the M

energetically lowest ones are chosen to constitute the next

generation. This procedure is repeated many times until the

lowest total energy remains unchanged for a large number

of generations. The lowest total energy structure is then

taken for the global minimum. Global optimization pro-

cedures such as the present genetic algorithm cannot

explore the entire (3N - 6) dimensional potential energy

hypersurface, so that one can never be absolutely certain to

have found the global total-energy minimum, i.e., the most

stable gold-isomer. Experience has, however, shown that

genetic algorithms are among the most reliable unbiased

methods for the determination of the structure of the global

total-energy minimum.

In addition to the globally optimized structures, we also

considered other geometries. Among those were various

planar structures for N B 14 taken from [20–22]. More-

over, we also considered a planar structure for N = 15 by

adding a single atom to the planar geometry for N = 14,

making it maximally symmetric. To complete the study, we

also considered an icosahedral structure for N = 13 and a

tetragonal structure for N = 20 from [23].

As an extension to our earlier study, we have calculated

vibrational properties of the clusters. We apply the Normal

Mode Harmonic Oscillator (NMHO) approximation [24]

and assume, accordingly, that the structural dependence of

the total energy E, when expanded in a Taylor series, can

be terminated after the 2nd order terms. Then, the vibra-

tional frequencies, xi, are the square roots of the eigen-

values of the dynamical matrix with the elements

Dij ¼
1ffiffiffiffiffiffiffiffiffiffiffi

MiMj

p fij ¼
1ffiffiffiffiffiffiffiffiffiffiffi

MiMj

p o2E

oqioqj
: ð5Þ

Here, i and j represent two of the 3N cartesian coordinates,

denoted qi and qj, of the cluster atoms, and Mi and Mj are

the corresponding nuclear masses.

We use a finite-difference approximation to calculate

the force constants fij,

Ds is a small finite coordinate change, and Fmðqn � DsÞ
denotes the mth component of the force on the structure

which results from a shift �Ds of coordinate n. We found

that for Ds around 0.001 a.u., the results are essentially

insensitive to variations in Ds: Therefore, we have chosen

Ds ¼ 0:001 a.u. in the present calculations.

Finally, from the calculated vibrational frequencies and

with the use of Boltzmann statistics, we can calculate the

vibrational heat capacities

Cvib ¼ kB

XNVM

i¼1

a2
i eai

ðeai � 1Þ2
ð7Þ

with

fij ¼
o

oqi

oE

oqj
¼ o

oqj

oE

oqi
¼ 1

2

o

oqi

oE

oqj
þ o

oqj

oE

oqi

� �
¼ �1

2

oFi

oqj
þ oFj

oqi

� �

’
�1
4Ds Fiðqj þ DsÞ � Fiðqj � DsÞ þ Fjðqi þ DsÞ � Fjðqj � DsÞ
� �

i 6¼ j
�1
2Ds Fiðqi þ DsÞ � Fiðqi � DsÞ½ � i ¼ j:

( ð6Þ
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ai ¼
�hxi

kBT
� Ti

T
ð8Þ

and kB being the Boltzmann constant. NVM is the number

of non-zero frequencies and equals 3N - 6 (3N - 5) for

non-linear (linear) systems. Moreover, we associate each

vibrational mode i with a characteristic temperature Ti. Ti is

related to the temperature (T^ 2.35 Ti) at which the con-

tribution of the given mode changes most rapidly as a

function of temperature. At T^ 2.35 Ti, the contribution of

the ith mode equals roughly 64% of its maximal contri-

bution (at T !1).

Finally, it is easily seen that

lim
T!1

Cvib ¼ NVM� kB

¼ NVM� 8:6� 10�5 eV=K

�NVM� 8:3 J=ðK molÞ: ð9Þ

Thus, from the equipartition theorem, we get that the 6 or 5

rotational and translational modes give a contribution of 25

or 21 J/(K mol) to the heat capacity per cluster. This value

is reached for the temperatures we shall consider.

3 Results and discussion

3.1 Structural and energetic properties

We applied the method outlined above for studying prop-

erties of neutral gold clusters with sizes N = 2–20 atoms.

The resulting structures are shown in Fig. 1. In Fig. 2, we

show the average value of the nearest-neighbor interatomic

distances for the AuN clusters as a function of N. In this

case, we have defined two atoms to be nearest neighbors if

their interatomic distance is below the average of the

nearest-neighbor and the next-nearest-neighbor distances of

crystalline gold, i.e., below 6.58 a.u. The figure shows also

experimental values for the Au2 dimer and for crystalline

gold as well as a typical theoretical value for a linear chain

of gold atoms (see e.g., [25]). We see that our theoretical

value for the Au2 molecule is slightly larger than the

experimental value. Moreover, we see that the average

value even for the largest clusters of the present study, Au20,

is well below the value for the crystal but rather resembles

the value for the linear gold chain, a system with low-

coordinated gold atoms, as is the case for the present sys-

tems. In fact, as shown elsewhere [14], no atom for the gold

clusters with up to 20 atoms have a higher coordination than

7, and for the largest clusters the average is around only 5.

As discussed previously [14], we found that the opti-

mized structures of the AuN clusters possess a low sym-

metry. Moreover, the clusters with up to N = 6 atoms were

found be planar. Above N = 6, the structures are three-

dimensional. On the other hand, experimental and theo-

retical studies suggest that planar structures are stable up to

around 15 atoms (see e.g., [14, 20, 26, 27]). Therefore, we

also considered these planar structures.

Figure 3 depicts the total energy variation as a function

of cluster size. We see that the planar structures are ener-

getically close to the global minimum isomers predicted by

our unbiased genetic algorithm search. This suggests that

the inaccuracies in the DFTB description of the interatomic

interactions are small. On the other hand, the total energy

of the icosahedral Au13 cluster is significantly above the

value for the optimized Au13 cluster, whereas the tetrago-

nal Au20 cluster is only marginally higher in energy than

the globally optimized structure. In addition, when allow-

ing the symmetry of the icosahedral Au13 cluster to be

lowered, the total energy is reduced, too, as can be seen in

the figure. This is to a much lesser extent the case for the

tetrahedral Au20 cluster.

To identify particularly stable clusters, it is useful to

consider the stability function,

42EðNÞ ¼ EðN þ 1Þ þ EðN � 1Þ � 2EðNÞ: ð10Þ

This function has maxima (minima) for particularly stable

(unstable) clusters, see Fig. 4. Figure 4 shows a clear even-

odd oscillatory pattern, implying that clusters with even

N are more stable than those with odd N. Moreover, the

cluster with N = 8 is found to be particularly stable. As we

shall show below, this cluster may be ascribed an almost

spherical shape, which can explain its enhanced stability.

An additional reason may be found in its electronic prop-

erties: the cluster with N = 8 atoms has a particularly large

energy gap between occupied and unoccupied orbitals (see

[14]).

Information about the overall structure is obtained as

follows. For each AuN, cluster we first determine its center,

R0 ¼
1

N

XN

i¼1

Ri; ð11Þ

with Ri being the position atom i. Subsequently, we

introduce a radial vector for each atom,

ri ¼ Ri � R0: ð12Þ

From the radial vectors, we construct the 3 9 3 matrix

containing
P

i si ti (with s and t being x, y, and z). The

eigenvalues Iaa of this matrix are used to identify the

overall cluster-shape: three identical eigenvalues suggest a

more spherical shape, whereas two large and one small

value suggest a lens-like shape, and two small and one

large value suggest a cigar-like shape. Figure 5 shows the

average eigenvalue (divided by N�
5
3; which is the scaling a

spherical jellium model has) together with marks indicating

the overall shape. The figure also depicts the largest
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difference between the eigenvalues. We see that except for

a single atom, no cluster has an overall spherical shape,

which agrees with the point group analysis of our former

study [14]. It is obvious that the clusters exhibit a low

symmetry. However, for N = 8, 9, and 18, the largest

difference of the eigenvalues is small (in particular for

N = 8) suggesting that these clusters are close to being

spherical. Fa et al. [28] suggested that the clusters could

have structures related to either fragments of the crystal or

tube-like structures. This is not supported by the results

shown in Fig. 5; the structures are indeed of low symmetry.

We may use the common-neighbor analysis [29–31] to

obtain further information on the cluster structures. First, a

cut-off distance is defined to decide whether two atoms are

assumed bound or unbound. Then, three indices (i, j, k) are

ascribed to each pair of atoms. i is the number of common

neighbors, j is the number of bonds between them, and k is

the number of bonds in the longest unbroken sequence of

bonds among them. We use the average of the nearest—

and next-nearest-neighbor distances in the fcc crystal

structure of Au as cut-off distance. For an infinite fcc

crystal, the three sets (2,1,1), (4,2,1), and (4,4,4) occur with

a relative occurrence of 4:2:1. Figure 6 exhibits many other

sets of indices additional to those of the fcc crystal and with

relative occurrences comparable with the ones of the

indices of the fcc crystal. Thus, the common-neighbor

analysis does not at all suggest that the structure of the

clusters is similar to a crystal fragment.

Fig. 1 The structures of the

AuN clusters from the global

structure optimization
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3.2 Heat capacities and vibrational properties

As an extension of our earlier study, the optimized struc-

tures were used for calculating the vibrational contribution

to the heat capacity at finite temperatures. Figure 7 shows

the results for 70, 298.15, 500, 700, and 1,200 K. The

vibrational heat capacity of the gold clusters shows a strong

size dependence [beyond that of Eq. 9], particularly for

smaller cluster sizes and at low temperatures. This feature

Fig. 2 The average nearest-neighbor bond length as a function of

cluster size. The horizontal dashed lines give (from below) the

experimental value for the gold dimer, the theoretical value for a

linear chain of gold atoms, and the experimental value for crystalline

gold

Fig. 3 The variation in the total energy per atom (relative to that of

the isolated atom) for the optimized AuN clusters (solid curve). In

addition, for N [ 6, our calculations give non-planar structures as the

lowest-total energy structures. For 7 B N B 15, we show, therefore,

also the total energy of the planar structures (dark circles). For

N = 13, we show also the total energy of icosahedral Au13 and for

N = 20 also that of tetragonal Au20 clusters (dark triangles) both

before (upper symbols) and after (lower symbols) structural relaxation

Fig. 4 The stability function as a function of N

Fig. 5 Properties related to the eigenvalues Iaa that describe the

overall shape of the clusters. The upper panel shows the average

value (scaled by N-5/3) together with marks indicating whether the

AuN cluster is overall spherical (dots in the lowest row), overall cigar-

like shaped (middle row) or overall lens-like shaped (upper row). The

lower panel shows the largest difference in the eigenvalues

Fig. 6 Results of a common-neighbor analysis. Each curve shows the

relative occurrence of a certain set of indices (i, j, k) (described in the

text), when excluding (i, j, k) = (0, 0, 0), and the thicker curve
shows the occurrence for (i, j, k) = (2, 1, 1). (i, j, k) = (4, 1, 1) and

(i, j, k) = (4, 4, 4) are not found in this size range
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becomes less pronounced as the cluster size and/or tem-

perature increases. The obtained pattern does not compare

to the stability function Fig. 4; the only coinciding peak is

at N = 6 atoms. Thus, there seems to be little correlation

between low-temperature vibrational heat capacity and

stability.

Figure 8 shows Cvib as a function of temperature for

different cluster sizes. As expected, for each size Cvib is a

monotonously increasing function of T. Interesting is it that

Cvib for N = 6 is a much more rapidly increasing function

of T for low T than is the case for the other cluster sizes.

Figure 7 reflects this finding as well.

It follows from Eq. 7 that Cvib is a superposition of the

contributions from the individual modes. In Fig. 9, we

show the contributions from the three modes with non-

vanishing frequencies for the cluster with N = 3 atoms.

For a given temperature T, the contribution from the

individual modes is a decreasing function of the frequency

of the mode [see Eq. 7]. Thus, the largest contribution of

the individual modes in Fig. 8 originates from the mode

with the lowest frequency.

We can now rationalize the difference between the Cvib

curves for N = 6 and the other cluster sizes (Fig. 8). Fig-

ure 10 presents the characteristic temperatures of the dif-

ferent modes as a function of cluster size. As discussed in

Sect. 2, Ti quantifies the temperature range at which the

contribution of the given mode changes most rapidly as a

function of temperature. The atypical behavior of the

N = 6 cluster in Fig. 8 is explained by the presence of a

very low-frequency mode (i.e., a low Ti; see Fig. 10).

Figure 10 suggests then that this will also be the case for

the N = 5 and N = 12 clusters.

A similar analysis can also be used in order to explain

the results for T = 70 K in Fig. 7. In this case, we have

large values for Cvib in those cases where the smallest Ti is

particularly small.

The reason that the N = 6 cluster has a mode with a

particularly low characteristic frequency is found in the

Fig. 7 The vibrational contribution to the heat capacity per cluster

for different temperatures as function of size of the clusters. The

lower panel shows an expanded version of the results for T = 70 K

Fig. 8 Heat capacity as a function of temperature for clusters of

different size

Fig. 9 The temperature dependence of the individual modes (thin
curves) to the total vibrational heat capacity (thick curve) for the

N = 3 cluster

Fig. 10 The characteristic temperatures for the different vibrational

modes as function of the size, N, of the clusters. For a given N, each

line marks that at least one mode has that characteristic temperature
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calculated structural properties. According to our results,

the gold clusters with up to N = 6 have a two-dimensional

structure, whereas we find that from N = 7, the gold

clusters form three-dimensional structures. The planar

structure for N = 6 results in the energetically low-lying

modes. Since it is known that also larger clusters are planar

(as also found when using more accurate theoretical

methods), it is possible that also the larger clusters will

have particularly large heat capacities at low temperatures.

In order to support this suggestion, we show in Fig. 11 a

schematic representation of the modes of the lowest fre-

quencies for the planar Au5 and Au6 clusters. For the latter,

three modes are very close to being energetically degen-

erate and, therefore, we show all three modes. The figure

clearly demonstrates that the low-energy modes for the

planar clusters are related to a bending of the clusters.

4 Conclusions

We have presented the structural and thermodynamic

properties of AuN clusters with N from 2 to 20. We used an

unbiased approach to identify the structures of the global

total-energy minima. This method combines genetic algo-

rithms with a parametrized density-functional method. As

an extension of our earlier work, we have studied vibra-

tional and thermodynamic properties of the clusters in

order to explore relations between stability, structure, and

heat capacities of clusters.

Our study shows that the gold clusters generally exhibit

low symmetry, and that with up to N = 6, the clusters

adopt planar structures. For larger values of N, our

approach finds three-dimensional structures, which is in

partly disagreement with more accurate methods. How-

ever, we find that the total-energy difference between

planar and three-dimensional structures for N up to well

above 10 is very small. By analyzing the structures, we find

that the clusters do not resemble fragments of the fcc

crystal. The vibrational heat capacity of the gold clusters is

found to be strongly size dependent at low temperatures

and for the smallest clusters. This becomes less pronounced

when the size and/or temperature increases. An interesting

observation is that the planar structures have a particularly

large vibrational heat capacity at low temperatures, a

finding that is related to the existence of low-frequency

out-of-plane modes of these clusters and that might be used

in experimentally identifying those.

Details about the total energies, the structures, and the

lowest vibrational frequencies can be found in the sup-

plementary material.
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